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Further Monotonicity Properties for
Specialized Renewal Processes .

by

: 1 Mark Brown

Sume~~y. Def ine Z(t) to be the forward recurrence t ime at t for a

renewal process with interarrival time distribution , F, which is assumed

to be II4RL (increasing mean residual life). It is shown that E~(Z(t)) is

increasing in t � 0 for all increasing convex $. An example demonstrates

• that Z(t) is not necessarily stochastically increasing nor is the renewal

function necessarily concave. Both of these properties are known to

hold for F DFR (decreasing failure rate).

1. Introduction. It is shown in Brown (31 that if F is IMRL (increasing

mean residual life) and Z(t) is the forward recurrence time at t for a

renewal process with interarrival time distribution F, then EZ(t) is in-

creasing in t � 0. In this paper the result is strengthened to E,(Z(t))

increasing in t for all increasing convex •. An example is given to

show that the result cannot be extended to general increasing functions,

equivalently that Z(t) need not be atochastically increasing in t. The

same example also shows that F IMRL does not imply that the renewal func-

tion M(t) is concave, nor that EA (t), ttw expected renewal age at time t,

in increasing. The table below sumearizes the monotonicity results of

thi, paper and (3].
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IMRL DFR

Z(t) E~(Z(t))$ for increasing Z(t) stochastically
(forward recurrence time) convex •; Z(t) not necessarily increasing in t � 0.

s tochastically increasing

A(t) EA(t) not necessarily increasing A(t) stochastically
• (renewal age) increasing in t � 0.

M(t) M(t)—~ + in t � 0; 11(t) not 11(t) concave. The
(renewal function) necessarily concave, renewal density

exists on (0, u’)
-________________________________ 

and is decreasing.

The result E~(Z(t)+ for increasing convex • does not appear to be
provable by the methodology employed in (3]. A new approach is followed

based on a renewal theory identity (theorem 1) which may be of indepen-

dent interest and use.

__________ ‘
V

~;;c rA~J [
- i  ic ~- ~ __________

• 
- 

‘ - s r ~ ‘ -~ ( •

~~~~~~~~~~~~~~~~~~ ~~~~~~~

i t . .  i ~ ‘1: ~• i ~

4 Lp ~ ._ [
~~t

I.

I



-—~~
.
~~

•
~~~~

--

—~~~ p
2. Definitions and preliminaries. A random variable X with c.d.f. P

is defined to have an IMRL (increasing mean residual Life) distribution

on (0, “
~ 

if — u c , F(0- ) 0, 1(0) ‘C 1, and E(X — tjX > t) is

increasing in t � 0. Th. term increasing (decreasing) is used for mono-

tone non—decreasing (non—increasing). X i defined to have a DFR distri-

bution on (0, a’) if 1(0—) — 0, 1(0) ‘C l~ and X — t ix  > t (the conditional

distribution of X — t given that I > t) is stochastically increasing in

t ~ 0. Lemea 1 below reviews several properties of IMRL and DFR distri-

bution...

Ismet 1 Ci) P DFR ~~ log 1(x) convex - - F 1. absolutely continuous on

(0, a’) and possesses a version of its pdf, f for which the hazard function

h(x) — 
f(x) is decreasing.
1(x)

(ii) F DIR ‘with finite mean implies F IMRL; P IMRL does not imply F DFR.

(iii) F flIRt ~~ C DYR where C(x) - 
;
ff(Y)dY.
0

(iv) F INRL C~~~ E($(X — t)IX > t]f in t � 0 for all convex increasing $.

(v) Mixtures of DIR distributions are DIR. A mixture of IMRL distri-

butio ns possessing a finite mean is IMRL.

(vi) Define 1(t) to be the forward recurrence time at t for a renewa l

procssa with interar rival time distribution F. Then F IMRL (DIR) implies

1(t) IMR L (DIR) .

Proof Ci) Th. fact that a DIR distribution on (0, .‘) 1. absolutely con—

tinuous on (0, a’) (it can hav, an atom at (0)) can be proved by following

• an argument of Barlow and Proachan Cl] p. 77. The other implications

are straightfor ward .



-

— 4 —

(ii) The first part is trivial . The distribution discu ed in section

S (i) is IMRL but not DFR.

(iii) E(X — tjx > t) — 1/h
c
(t), where hc is the hazard function of C.

(iv) Let $ be an increasing convex function. Then

x
$(x) — $(0) + f$’(y)dy with 4 ’+. The expectations

0

E1$(X), 4E$(X 
— t)IX > t)], Ec(+ ’( X  — t)IX > t] are all well defined

with 4— as a possible value. If EØ(X) — a’ then E1($(X 
— t)IX > ti — — -

‘

for all t and the result is trivially true. If 5$(X) ‘C then all the

above expectations are finite. Integration by parts gives:

(1) E~i$(x — t ) I X  t)  — •(0) + E1(X — tix > t)E6[$’(X — t)(X ‘ t]

Since C 1. DIR (iii), $‘ is increasing, and E1(X 
— tIX > t)t , the

result follows.

Cv) The closure of DIR under mixtures is found in Barlow and Proachan

(1) p. 103. Consider ~(t) — J7(t)dP(ct), where F
~ 
is IMRL, and P a pro-

bability measure. Define p(cs) — E~ X and ~~(t) - 
~~ 

Ji (x)dx. Then
0

— ~~ ff(x)dx — f~~(t)(~~dP(n)). Each G0 is DIR by (iii), therefore

C is a mixture of DIR’s and is therefore DIR. By (iii) F is IMRL.

(vi) The distribution of Z(t) La a mixture of the distributions of

CX — > a, 0 ~ a � t). Thus the result for F DFR follows directly from

Cv). For F IMRL we can apply (v) and obtain the desired result provided

that we show that EZ(t) ‘C a’. But

• EZ(t)~~~E(X — t IX >t) � ~— ff(x)dx~c~~~ < a ’.

1(t) t F(t)
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3. Identity. We will be working with two renewal processes, one with

interarrival time distribution F, the other with distribution C where

t
C(t) — ! Ji~(x)dx. It is important to note that the renewal process withp 0
interarrival time distribution C is not the stationary renewal process

corresponding to F (which would have its first renewal governed by C and

all subsequent renewals governed by F) but rather a renewal process with

f all interarrival times distributed as C. Define Z1(t)(Zc(t)) to be the

forward recurrence time at t for the renewal process with interarrival

time distribution 1(0). Define ~~~~~ Pr(Z1(t) > x), and g~(~)~ to be
F~t, G~

t,

the pdf of Z0(t) evaluated at x. Note that C is absolutely continuous

and thus so is Z0(t). Define 
~~ 

M~ to be the renewal functions for the

two processes. Both start with a renewal epoch at (01, so that for example

a’ (k) a’ (k)
• II.~(t) — F (t) rather than } F (t). By Wald’s identity EZ1(t) — ~M~(t) — t.

k—0 k—i

Since M1(t) 
— t is of bounded variation on £0, t) it makes sense to

talk about dEZ1(y) — pdN1.(y) — dy. Note that dE(Z1(y)) has an atom of

size p/I(0)aty— 0.

In theorem 1 below we use the following version of 
~~ 

:
C

(2) R1~~~) — ~ f~~(t - y + x)dK~(y)

Thus we regard g1 ~ 
as having the above well defined value for

~~~~~~~~~

each x ra ther than as an equivalence class of ac . equal functions.

Theorem. l For allt�0,x�0:

(3) a’ 
~~

8zG
_y)~~~

(Zp(Y)) — _
)~ Z ( ~) + J~~1(~_y)dE(ZpY )

_____ - ~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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Proof For a > 0 define the following Laplace transforms:

•i~~’ 
x) : J e 5tg1~~~)dt, *2

(8 P x)a J c  F1 (t) dt b

— f e~~~F(t + x)dt, $ (a) — f e 5td~~(t),
t—o N1

— I e~~~dF(t), and similarly $~~a) and

By (2):

(4) 
~
‘l~~’ 

x) — ~~
1j(~( ) $ (s) -

•

Noting that FZ~~~) 
— J1(t — y + x) dM~(y) it follows that:

~~ ~~~~ 
x) — R

~
(s)$

~~
a)

From (4) and (5) we obtain:

•2(a,x) ~i$~4s)
(6) 

*j(s~x) 
—

From (6) we see that •2’~1 
is independent of x. This suggests that

is the convolution of g1 ,~~ 
and a function which does not depend - •F’ C’ ~

on x. Next:

(7) sa*,4
s)sv(l — $~~(s))

(8) $~~s) — (1 — •(~)) —l — (1 — [(1 — $1(s))Isp])

From (6), (7) and (8):

_______ 19) — p(l — $1(s)) — s
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_
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But u(1 — $y)
] 
is the Laplace transform of p44s) and s~~ is the j

Laplace transform of f(t) — t. Thus u$~
(s),$~(s) is the Laplace transform-F C

of pM7(t) — t EZ1(t). The result now follows.

Splitting the range of integration (0, t) into (0} and (0, t] and

recalling that dEZ1(y) has an atom of size pIF(0) at 0, gives the alter—
native expression in (1). 0

I

_ _ _ _
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4. Monotonicity Result. The main monotonicity result is now derived.

Theorem 2 If F is fliRt then E~(Z(t)) is increasing in t � 0 for all

increasing convex functions $.

t
Proof Since • is an increasing convex function, $(t) $(0) + f$’(x)dx

0
with •‘+. It is straightforward to show that the expectations E($(Z1(t))),

E($’(Z0(t) ) ) ,  E0$’(X) are all well defined and are either finite or equal

to 4- depending on whether E1$(X) is finite or equals 4—.

Start with (3) (the identity of theorem 1), multiply both sides by

•‘(x) and integrate x from 0 to . The left side, after integration by

parts reduces to E$(Z1(t)) 
— •(0). It is finite (equals 4-) if and only

if E$(X) is finite (equals 4-). The right side, afte r interchanging the

order of integration reduces to f E$’(Zc(t — y))dE(Z1
(y)) ,  and it too is

finite (equals i-a’) if and only if E$(X) is finite (equals 4-). Thus:

t
(10) E+(Z1(t)) — +(0) + J E$’(Z0( t  — y)dE(Z F(y))

0—

Since •‘ is increasing and C is DFR (lemma 1 (iii)) it follows from Brown

(3], theorem 3,that E$’(Z0(t 
— y)) is increasing in t for each y. Since

EZ7(y) is increasing (Brown (3], theorem 2), $‘ ~ 0, and E4’(Z0(t — y)) iS

increasing, it follows from (10) that E$(Z1(t)+. 0
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5. Exzuples. (I) In this ex~~p1e P is IMRL, 1(t) is not stochastically
increasing, m is not decreasing (and thus 14 is not concave) and EA(t) is

not Increasing. The hazard function of P is given by

f 1 0 � i < l

4 l � x ’ C 2

x � 2

For t � 1, I — t I X  > t is stochastically increasing and thus increasing

in mean. For 0 � t ~ 1, E(X — t~X > t) — 1 + where

c — e 1(99.75e 4 — .75) > 0. Thus F is IMRL.

For 0 ‘C 6 ‘C 1, Pr(Z(0) > 6) — e 6. For t = 1, the hazard function,

for each x € [0, 6) is a weighted average of 1 and 4, with 4 receiv—

• ing positive weight. Thus h~~~)> 1 for x E [0, 6] and consequently

Pr(Z(3.) > 6) c e 6 
— Pr(Z(0) > 6). Therefore Z(t) is not stochastically

Increasing.

Finally for a ‘C 1, E(A(1 + c)JA(1) a’ si a’ s + c(1 — a) + o(c), whileE(A(1 + c) I A(1) — 1) — 1 — 3€ + o(c). Thus E(A(1. + e)) — 1 — e~~— 2ce~~ + o(€) =

EA(l) —2ce~~ + o(c); thus ~~EA(t) a’ —2e’1 and EA(t) is not increasing.
t—1

— (ii) Berman [2) p. 429 raised the question of whether F NWU implies

that the renewal density is decreasing. In the example below P is DFRA

(and thus NWU) and the renewal density is not decreasing. Recall that

F is defined to be NWIJ if X — tIX > t is stochastically greater than X

for all. t � 0, and DPRA if R t )  
— 
—lnF(t) is decreasing in t ) 0.

• (wo o �~~< i
F is defined by the hazard function h(x) — ‘~ 1 1 � x c 2

x � 2

I• Clearly F is DIM (and thus NWU). Define p(t) Pr(1 ‘C A(t) ‘C 2). Note

that p(2) — p(2—) — Pr(N(2) — 0) — p(2—) — e~~01. Thus

• 
_ _ _ _ _ _ _ _ _ _ _ _ _ _~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ——
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— 100(1 — p(2—)) + p(2—)while m(2) a’ 100(1 — p(2—)) + (p(2—) — e 10
~) +

2e~~
01 

— m (2—) + e~~°’. It follows that for some c > 0, m(t) > rn(s) for

2 + c > t > 2 > s > 2 — c, and thus m is not decreasing.

(iii) It appears that the prospects are not good for deriving monotonicity

results for renewal processes with IFR interarrival. t imes . Berman (2]

points out that the convolution of three exponentials with conmon para-

meter does not have an increasing renewal density. Moreover , it is easy

to construct absolutely continuous IFR distributions which are arbitrarily

close to a degenerate distribution, say for example a degenerate distri-

bution at (1). Such a distribution has a renewal function which for small

to moderate t differs little from that of the degenerate distribution at

(1).

___  
_ _ _ _  

.~~~~~~~~~~
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